Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(4): e0206523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38527003

RESUMO

Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.


Assuntos
Bactérias , Carbono , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecossistema , Água/análise , Ácido Glutâmico/metabolismo , Ácidos Graxos/metabolismo , Solo , Hidrogênio/metabolismo , Glucose/metabolismo
2.
Sci Total Environ ; 861: 160659, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36473654

RESUMO

The predicted global increase in the frequency, severity, and intensity of forest fires includes Central Europe, which is not currently considered as a wildfire hotspot. Because of this, a detailed knowledge of long-term post-fire forest floor succession is essential for understanding the role of wildfires in Central European temperate forests. In this study, we used a space-for-time substitution approach and exploited a unique opportunity to observe successional changes in the physical, chemical, and microbial properties of the forest floor in coniferous forest stands on a chronosequence up to 110 years after fire. In addition, we assessed whether the depletion of organic matter (OM) and input of pyrogenic carbon (pyC) have significant effects on the post-fire forest floor succession. The bulk density (+174 %), pH (+4 %), and dissolved phosphorus content (+500 %) increased, whereas the water holding capacity (-51 %), content of total organic carbon and total nitrogen (-50 %), total phosphorus (-40 %), dissolved organic carbon (-23 %), microbial respiration and biomass (-60 %), and the abundance of fungi (-65 %) and bacteria (-45 %) decreased shortly after the fire event and then gradually decreased or increased, respectively, relative to the pre-disturbance state. The post-fire forest floor succession was largely dependent on changes in the OM content rather than the pyC content, and thus was dependent on vegetation recovery. The time needed to recover to the pre-disturbance state was <110 years for physical and chemical properties and < 45 years for microbial properties. These times closely correspond to previous studies focusing on the recovery of forest floor properties in different climate zones, suggesting that the times needed for forest vegetation and forest floor properties to recover to the pre-disturbance state are similar across climate zones.


Assuntos
Incêndios , Incêndios Florestais , Carbono , Florestas , Biomassa
3.
Commun Biol ; 2: 441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815196

RESUMO

Earthworms co-determine whether soil, as the largest terrestrial carbon reservoir, acts as source or sink for photosynthetically fixed CO2. However, conclusive evidence for their role in stabilising or destabilising soil carbon has not been fully established. Here, we demonstrate that earthworms function like biochemical reactors by converting labile plant compounds into microbial necromass in stabilised carbon pools without altering bulk measures, such as the total carbon content. We show that much of this microbial carbon is not associated with mineral surfaces and emphasise the functional importance of particulate organic matter for long-term carbon sequestration. Our findings suggest that while earthworms do not necessarily affect soil organic carbon stocks, they do increase the resilience of soil carbon to natural and anthropogenic disturbances. Our results have implications for climate change mitigation and challenge the assumption that mineral-associated organic matter is the only relevant pool for soil carbon sequestration.


Assuntos
Biotransformação , Microbiota , Oligoquetos/fisiologia , Compostos Fitoquímicos/química , Plantas , Solo/química , Animais , Carbono/química , Ciclo do Carbono , Plantas/química , Microbiologia do Solo
4.
FEMS Microbiol Ecol ; 92(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27353658

RESUMO

We compared methane (CH4) and carbon dioxide (CO2) fluxes in samples collected from the aboveground parts of wood ant nests and in the organic and mineral layer of the surrounding forest floor. Gas fluxes were measured during a laboratory incubation, and microbial properties (abundance of fungi, bacteria and methanotrophic bacteria) and nutrient contents (total and available carbon and nitrogen) were also determined. Both CO2 and CH4 were produced from ant nest samples, indicating that the aboveground parts of wood ant nests act as sources of both gases; in comparison, the forest floor produced about four times less CO2 and consumed rather than produced CH4 Fluxes of CH4 and CO2 were positively correlated with contents of available carbon and nitrogen. The methanotrophic community was represented by type II methanotrophic bacteria, but their abundance did not explain CH4 flux. Fungal abundance was greater in ant nest samples than in forest floor samples, but bacterial abundance was similar in both kinds of samples, suggesting that the organic materials in the nests may have been too recalcitrant for bacteria to decompose. The results indicate that the aboveground parts of wood ant nests are hot spots of CO2 and CH4 production in the forest floor.


Assuntos
Formigas/fisiologia , Ciclo do Carbono/fisiologia , Metano/metabolismo , Animais , Bactérias , Carbono , Dióxido de Carbono , Florestas , Fungos , Gases , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA